Resistors are said to be connected together in “**Parallel**” when both of their terminals are respectively connected to each terminal of the other resistor or resistors.

Unlike the previous series resistor circuit, in a parallel resistor network the circuit current can take more than one path as there are multiple paths for the current. Then parallel circuits are classed as current dividers.

Since there are multiple paths for the supply current to flow through, the current may not be the same through all the branches in the parallel network. However, the voltage drop across all of the resistors in a parallel resistive network IS the same. Then, **Resistors in Parallel** have a **Common Voltage** across them and this is true for all parallel connected elements.

So we can define a parallel resistive circuit as one where the resistors are connected to the same two points (or nodes) and is identified by the fact that it has more than one current path connected to a common voltage source. Then in our parallel resistor example below the voltage across resistor R_{1} equals the voltage across resistor R_{2} which equals the voltage across R_{3} and which equals the supply voltage. Therefore, for a parallel resistor network this is given as:

In the following resistors in parallel circuit the resistors R_{1}, R_{2} and R_{3} are all connected together in parallel between the two points A and B as shown.

Related Products: Resistor

In the previous series resistor network we saw that the total resistance, R_{T} of the circuit was equal to the sum of all the individual resistors added together. For resistors in parallel the equivalent circuit resistance R_{T} is calculated differently.

Here, the reciprocal ( 1/R ) value of the individual resistances are all added together instead of the resistances themselves with the inverse of the algebraic sum giving the equivalent resistance as shown.

Then the inverse of the equivalent resistance of two or more resistors connected in parallel is the algebraic sum of the inverses of the individual resistances.

If the two resistances or impedances in parallel are equal and of the same value, then the total or equivalent resistance, R |

Note that the equivalent resistance is always less than the smallest resistor in the parallel network so the total resistance, R_{T} will always decrease as additional parallel resistors are added.

Parallel resistance gives us a value known as **Conductance**, symbol **G** with the units of conductance being the **Siemens**, symbol **S**. Conductance is the reciprocal or the inverse of resistance, ( G = 1/R ). To convert conductance back into a resistance value we need to take the reciprocal of the conductance giving us then the total resistance, R_{T} of the resistors in parallel.

Related Products: Resistor Fixed Single-Through Hole

We now know that resistors that are connected between the same two points are said to be in parallel. But a parallel resistive circuit can take many forms other than the obvious one given above and here are a few examples of how resistors can be connected together in parallel.

The five resistive networks above may look different to each other, but they are all arranged as **Resistors in Parallel** and as such the same conditions and equations apply.

Find the total resistance, R_{T} of the following resistors connected in a parallel network.

The total resistance R_{T} across the two terminals A and B is calculated as:

This method of reciprocal calculation can be used for calculating any number of individual resistances connected together within a single parallel network. If however, there are only two individual resistors in parallel then we can use a much simpler and quicker formula to find the total or equivalent resistance value, R |

This quicker method of calculating two resistors either equal or unequal connected together in parallel is given as:

Consider the following circuit which has only two resistors in a parallel combination.

Using our formula above for two resistors connected together in parallel we can calculate the total circuit resistance, R_{T} as:

One important point to remember about resistors in parallel, is that the total circuit resistance ( R_{T} ) of any two resistors connected together in parallel will always be **LESS** than the value of the smallest resistor in that combination.

Related Products: Resistor Networks and Arrays

In our example above, the value of the combination was calculated as: R_{T} = 15kΩ, where as the value of the smallest resistor is 22kΩ, much higher. In other words, the equivalent resistance of a parallel network will always be less than the smallest individual resistor in the combination.

Also, in the case of R_{1} being equal to the value of R_{2}, that is R_{1} = R_{2}, the total resistance of the network will be exactly half the value of one of the resistors, R/2.

Likewise, if three or more resistors each with the same value are connected in parallel, then the equivalent resistance will be equal to R/n where R is the value of the resistor and n is the number of individual resistances in the combination.

For example, six 100Ω resistors are connected together in a parallel combination. The equivalent resistance will therefore be: R_{T} = R/n = 100/6 = 16.7Ω. But note that this ONLY works for equivalent resistors.

The total current, I_{T} entering a parallel resistive circuit is the sum of all the individual currents flowing in all the parallel branches. But the amount of current flowing through each parallel branch may not necessarily be the same, as the resistive value of each branch determines the amount of current flowing within that branch.

For example, although the parallel combination has the same voltage across it, the resistances could be different therefore the current flowing through each resistor would definitely be different as determined by Ohms Law.

Consider the two resistors in parallel above. The current that flows through each of the resistors ( I_{R1} and I_{R2} ) connected together in parallel is not necessarily the same value as it depends upon the resistive value of the resistor. However, we do know that the current that enters the circuit at point A must also exit the circuit at point B.

Kirchoff’s Current Laws states that: “*the total current leaving a circuit is equal to that entering the circuit – no current is lost*“. Thus, the total current flowing in the circuit is given as:

I_{T} = I_{R1} + I_{R2}

Then by using Ohm’s Law, the current flowing through each resistor of Example No2 above can be calculated as:

Current flowing in R_{1} = V_{S} ÷ R_{1} = 12V ÷ 22kΩ = 0.545mA or 545uA

Current flowing in R_{2} = V_{S} ÷ R_{2} = 12V ÷ 47kΩ = 0.255mA or 255uA

thus giving us a total current I_{T} flowing around the circuit as:

I_{T} = 0.545mA + 0.255mA = 0.8mA or 800uA

and this can also be verified directly using Ohm’s Law as:

I_{T} = V_{S} ÷ R_{T} = 12 ÷ 15kΩ = 0.8mA or 800uA (the same)

The equation given for calculating the total current flowing in a parallel resistor circuit which is the sum of all the individual currents added together is given as:

I_{total} = I_{1} + I_{2} + I_{3} ….. + I_{n}

Then parallel resistor networks can also be thought of as “current dividers” because the supply current splits or divides between the various parallel branches. So a parallel resistor circuit having *N* resistive networks will have N-different current paths while maintaining a common voltage across itself. Parallel resistors can also be interchanged with each other without changing the total resistance or the total circuit current.

Calculate the individual branch currents and total current drawn from the power supply for the following set of resistors connected together in a parallel combination.

As the supply voltage is common to all the resistors in a parallel circuit, we can use Ohms Law to calculate the individual branch current as follows.

Then the total circuit current, I_{T} flowing into the parallel resistor combination will be:

This total circuit current value of 5 amperes can also be found and verified by finding the equivalent circuit resistance, R_{T} of the parallel branch and dividing it into the supply voltage, V_{S} as follows.

Equivalent circuit resistance:

Then the current flowing in the circuit will be:

So to summarise. When two or more resistors are connected so that both of their terminals are respectively connected to each terminal of the other resistor or resistors, they are said to be connected together in parallel. The voltage across each resistor within a parallel combination is exactly the same but the currents flowing through them are not the same as this is determined by their resistance value and Ohms Law. Then parallel circuits are current dividers.

The equivalent or total resistance, R_{T} of a parallel combination is found through reciprocal addition and the total resistance value will always be less than the smallest individual resistor in the combination. Parallel resistor networks can be interchanged within the same combination without changing the total resistance or total circuit current. Resistors connected together in a parallel circuit will continue to operate even though one resistor may be open-circuited.

Thus far we have seen resistor networks connected in either a series or a parallel combination. In the next tutorial about Resistors, we will look at connecting resistors together in both a series and parallel combination at the same time producing a mixed or combinational resistor circuit.

Error! Please fill all fields.

English only

It’s good to know about resistance in parallel.But if the same value resistors 100 or above are connected in parallel than what is the formulae to calculate equivalent resistance value…?

i have interested calculation proof in defferent ways on chemistry,maths and physics.so send on this e.mail.for me

if r is divided by n and connected by parallel what is equivalent resistant

It’s a nice post about Resistors in Parallel. I like the way you have described it. I really like it. Thanks for sharing.

It is not in any way obvious why the formula for resistors in parallel is correct. Specifically, it is counterintuitive why the total resistance in a parallel circuit is less than the smallest individual resistance.

It is intuitive if you think in terms of the old water analogy. For example, if you have one outlet pipe connected to a water tank in order to drain it, there will be a certain amount of resistance to the water flow (it takes some time to drain fully). If you add a second outlet pipe of the same size then the water drains away twice as fast as there are twice as many places for it to escape (resistance is lower by half).

To complete the analogy, the height of the water in the tank above the outlet (called the “head”) equates to voltage (pressure) and the amount of water flowing out of each pipe is the current (flow) which is controlled by the pressure above and the size of the outlet.

Anyway, that’s how my tiny brain deals with the concept.

You’re right; it isn’t intuitive. The missing piece is the calculation(s) should focus on the total circuit current, which then can be used via Ohm’s law, to determine the “effective” resistance. We get an insight into this when the current consumption per individual resistor is calculated using the given resistance and supply voltage. Also, think about how meters work when measuring voltage and resistance. Do they directly measure resistance or use current to determine the circuit resistance?

Just in case you missed the title, the tutorial is about Resistors in Parallel and not currents in parallel.

Thanx 4 information

I have been reading this well.

Perhaps you can verify what I seek to accomplish.

I have a voltage source of 5V dc. Maximum current available is 500ma. No more!

I placed a ” load ” accross the 5 V dc + and – terminals. The load drew 200ma with no issue. I then drew 500ma through the load and all went up in smoke so to speak.

Now if that device was rated at 300ma am I understanding that instead of using the one device (load) that by data sheet only accepts 300ma and take instead now 2 equal capacity devices able to each handle 300ma and place these two (2) in parallel that the needed 500ma would divide accross the parallel load to have 250ma flow through each one and have that safety margin of 50ma for each of the two (2) devices in this now parallel circuit? I would very much wish that you there or someone of equal knowledge verify this to me.

Thank you,

Sincerely

O.Mauser

Parallel connected circuits are current dividers, then your two devices will each share the 500 milliamps.

how could we find that the resistors are connected in series or parallel

plssss reply to this

plssssssssssssssssss

i have my exams

English only