As we saw previously in the Passive Band Pass Filter tutorial, the principal characteristic of a **Band Pass Filter** or any filter for that matter, is its ability to pass frequencies relatively unattenuated over a specified band or spread of frequencies called the “Pass Band”.

For a low pass filter this pass band starts from 0Hz or DC and continues up to the specified cut-off frequency point at -3dB down from the maximum pass band gain. Equally, for a high pass filter the pass band starts from this -3dB cut-off frequency and continues up to infinity or the maximum open loop gain for an active filter.

However, the **Active Band Pass Filter** is slightly different in that it is a frequency selective filter circuit used in electronic systems to separate a signal at one particular frequency, or a range of signals that lie within a certain “band” of frequencies from signals at all other frequencies. This band or range of frequencies is set between two cut-off or corner frequency points labelled the “lower frequency” ( ƒ_{L} ) and the “higher frequency” ( ƒ_{H} ) while attenuating any signals outside of these two points.

Simple **Active Band Pass Filter** can be easily made by cascading together a single Low Pass Filter with a single High Pass Filter as shown.

The cut-off or corner frequency of the low pass filter (LPF) is higher than the cut-off frequency of the high pass filter (HPF) and the difference between the frequencies at the -3dB point will determine the “bandwidth” of the band pass filter while attenuating any signals outside of these points. One way of making a very simple **Active Band Pass Filter** is to connect the basic passive high and low pass filters we look at previously to an amplifying op-amp circuit as shown.

This cascading together of the individual low and high pass passive filters produces a low “Q-factor” type filter circuit which has a wide pass band. The first stage of the filter will be the high pass stage that uses the capacitor to block any DC biasing from the source. This design has the advantage of producing a relatively flat asymmetrical pass band frequency response with one half representing the low pass response and the other half representing high pass response as shown.

The higher corner point ( ƒ_{H} ) as well as the lower corner frequency cut-off point ( ƒ_{L} ) are calculated the same as before in the standard first-order low and high pass filter circuits. Obviously, a reasonable separation is required between the two cut-off points to prevent any interaction between the low pass and high pass stages. The amplifier also provides isolation between the two stages and defines the overall voltage gain of the circuit.

The bandwidth of the filter is therefore the difference between these upper and lower -3dB points. For example, suppose we have a band pass filter whose -3dB cut-off points are set at 200Hz and 600Hz. Then the bandwidth of the filter would be given as: Bandwidth (BW) = 600 – 200 = 400Hz.

The normalised frequency response and phase shift for an active band pass filter will be as follows.

While the above passive tuned filter circuit will work as a band pass filter, the pass band (bandwidth) can be quite wide and this may be a problem if we want to isolate a small band of frequencies. Active band pass filter can also be made using inverting operational amplifier.

So by rearranging the positions of the resistors and capacitors within the filter we can produce a much better filter circuit as shown below. For an active band pass filter, the lower cut-off -3dB point is given by ƒ_{C1} while the upper cut-off -3dB point is given by ƒ_{C2}.

This type of band pass filter is designed to have a much narrower pass band. The centre frequency and bandwidth of the filter is related to the values of R1, R2, C1 and C2. The output of the filter is again taken from the output of the op-amp.

We can improve the band pass response of the above circuit by rearranging the components again to produce an infinite-gain multiple-feedback (IGMF) band pass filter. This type of active band pass design produces a “tuned” circuit based around a negative feedback active filter giving it a high “Q-factor” (up to 25) amplitude response and steep roll-off on either side of its centre frequency. Because the frequency response of the circuit is similar to a resonance circuit, this center frequency is referred to as the resonant frequency, ( ƒr ). Consider the circuit below.

This active band pass filter circuit uses the full gain of the operational amplifier, with multiple negative feedback applied via resistor, R_{2} and capacitor C_{2}. Then we can define the characteristics of the IGMF filter as follows:

We can see then that the relationship between resistors, R_{1} and R_{2} determines the band pass “Q-factor” and the frequency at which the maximum amplitude occurs, the gain of the circuit will be equal to -2Q^{2}. Then as the gain increases so to does the selectivity. In other words, high gain – high selectivity.

An active band pass filter that has a voltage gain Av of one (1) and a resonant frequency, ƒr of 1kHz is constructed using an infinite gain multiple feedback filter circuit. Calculate the values of the components required to implement the circuit.

Firstly, we can determine the values of the two resistors, R_{1} and R_{2} required for the active filter using the gain of the circuit to find Q as follows.

Then we can see that a value of Q = 0.7071 gives a relationship of resistor, R_{2} being twice the value of resistor R_{1}. Then we can choose any suitable value of resistances to give the required ratio of two. Then resistor R_{1} = 10kΩ and R_{2} = 20kΩ.

The center or resonant frequency is given as 1kHz. Using the new resistor values obtained, we can determine the value of the capacitors required assuming that C = C_{1} = C_{2}.

The closest standard value is 10nF.

The actual shape of the frequency response curve for any passive or active band pass filter will depend upon the characteristics of the filter circuit with the curve above being defined as an “ideal” band pass response. An active band pass filter is a **2nd Order** type filter because it has “two” reactive components (two capacitors) within its circuit design.

As a result of these two reactive components, the filter will have a peak response or **Resonant Frequency** ( ƒr ) at its “center frequency”, ƒc. The center frequency is generally calculated as being the geometric mean of the two -3dB frequencies between the upper and the lower cut-off points with the resonant frequency (point of oscillation) being given as:

- Where:
- ƒ
_{r}is the resonant or Center Frequency - ƒ
_{L}is the lower -3dB cut-off frequency point - ƒ
_{H}is the upper -3db cut-off frequency point

and in our simple example in the text above of a filters lower and upper -3dB cut-off points being at 200Hz and 600Hz respectively, then the resonant center frequency of the active band pass filter would be:

In a **Band Pass Filter** circuit, the overall width of the actual pass band between the upper and lower -3dB corner points of the filter determines the **Quality Factor** or **Q-point** of the circuit. This **Q Factor** is a measure of how “Selective” or “Un-selective” the band pass filter is towards a given spread of frequencies. The lower the value of the Q factor the wider is the bandwidth of the filter and consequently the higher the Q factor the narrower and more “selective” is the filter.

The **Quality Factor, Q** of the filter is sometimes given the Greek symbol of **Alpha**, ( α ) and is known as the **alpha-peak frequency** where:

As the quality factor of an active band pass filter (Second-order System) relates to the “sharpness” of the filters response around its centre resonant frequency ( ƒr ) it can also be thought of as the “Damping Factor” or “Damping Coefficient” because the more damping the filter has the flatter is its response and likewise, the less damping the filter has the sharper is its response. The damping ratio is given the Greek symbol of **Xi**, ( ξ ) where:

The “Q” of a band pass filter is the ratio of the **Resonant Frequency**, ( ƒr ) to the **Bandwidth**, ( BW ) between the upper and lower -3dB frequencies and is given as:

Then for our simple example above the quality factor “**Q**” of the band pass filter is given as:

346Hz / 400Hz = **0.865**. Note that **Q** is a ratio and has no units.

When analysing active filters, generally a normalised circuit is considered which produces an “ideal” frequency response having a rectangular shape, and a transition between the pass band and the stop band that has an abrupt or very steep roll-off slope. However, these ideal responses are not possible in the real world so we use approximations to give us the best frequency response possible for the type of filter we are trying to design.

Probably the best known filter approximation for doing this is the Butterworth or maximally-flat response filter. In the next tutorial we will look at higher order filters and use Butterworth approximations to produce filters that have a frequency response which is as flat as mathematically possible in the pass band and a smooth transition or roll-off rate.

Related products: EMI/RFI Suppression | EMI Filter

Error! Please fill all fields.

Yo babes

nice

Dear Filter Man,

I am not a technician, I need to know What Values of The Resistors & Capacitors That I must change to Get a LOW Pass Tube ACTIVE Filter Built , at 24 d b

I am looking for simple Values to Cutout The Freq: from 15 Hz to 600 Hz, And My High Pass Filter to work from 600 hz at 24 d b onwards

please help me out .

Which op-amp is used with these filters?

Any commonly available general purpose types of bipolar or FET op-amp such as the 741, 107, 358, etc. either single or dual supply can be used to build a filter providing they have the open-loop bandwidth you require.

Hey all. My college project is ” Design an active Band pass filter that will allow frequency form 1khz to 5khz.” what are the values of components should I be needing?

Hi,

I’m trying to make a project in which I play a tone into a mic and depending on the frequency of the tone, an LED which corresponds to that frequency range will light up. I will have about 4 or 5 ranges, and therefore 4 or 5 band-pass filters.

Which filter do you recommend for this purpose? Also, how do I make sure that if the frequency is outside of a range the LED will not light up at all?

I forgot to add that the width of each frequency range will be around 100 Hz.

Hi

Wayne Storr

IN My circuit I have use multiple freq. from 94Hz, 105Hz, 111Hz, 128Hz. Can I use narrow band pass filter effectively to pass this frequency without noise.

plz suggest.

Sandeep

Hello Sandeep, yes you could use a narrow band pass filter to pass your frequencies and attenuate those either side of your -3dB points.

Hi,

When cascading my two circuits together I have found that the gain drop’s by 6db. In the other section I read that this is due to the number of filters you are cascading, for 3 filters it wil be 9db etc. However I couldn’t find a solution as to change this back. For example. If my original circuit was to be at 20dB but now after cascading everything has been moved down by 6 db, what is the solution in order to keep my dB up at 20?

If the gain has dropped by -6dB or 0.5Av, then use an additional inverting or non-inverting amplifier on the output with a gain of two to bring it back to the original 20dB.

Hi Mark,

This may seem real silly but is there a specific reason why a high pass section should precede a low pass section? Is it possible to have a LPF>Amp>HPF?

Hello Amy, yes you can. Filters attenuate frequencies above (HPF) or below (LPF) their corner frequency otherwise they do nothing, so makes no difference which way around they are within a bandpass filter (BPF) circuit.

Dear Sir,

Could you please write about band stop filter. Thank you for your help.

Hello Fady, thanks for the suggestion.