Maximum Power Transfer

We have seen in the previous tutorials that any complex circuit or network can be replaced by a single energy source in series with a single internal source resistance, RS. Generally, this source resistance or even impedance if inductors or capacitors are involved is of a fixed value in Ohm´s.

However, when we connect a load resistance, RL across the output terminals of the power source, the impedance of the load will vary from an open-circuit state to a short-circuit state resulting in the power being absorbed by the load becoming dependent on the impedance of the actual power source. Then for the load resistance to absorb the maximum power possible it has to be “Matched” to the impedance of the power source and this forms the basis of Maximum Power Transfer.

The Maximum Power Transfer Theorem is another useful Circuit Analysis method to ensure that the maximum amount of power will be dissipated in the load resistance when the value of the load resistance is exactly equal to the resistance of the power source. The relationship between the load impedance and the internal impedance of the energy source will give the power in the load. Consider the circuit below.

Thevenins Equivalent Circuit.

thevenins equivalent circuit

 

In our Thevenin equivalent circuit above, the maximum power transfer theorem states that “the maximum amount of power will be dissipated in the load resistance if it is equal in value to the Thevenin or Norton source resistance of the network supplying the power“.

In other words, the load resistance resulting in greatest power dissipation must be equal in value to the equivalent Thevenin source resistance, then RL = RS but if the load resistance is lower or higher in value than the Thevenin source resistance of the network, its dissipated power will be less than maximum. For example, find the value of the load resistance, RL that will give the maximum power transfer in the following circuit.

Maximum Power Transfer Example No1.

maximum power transfer theorem

Where:
  RS = 25Ω
  RL is variable between 0 – 100Ω
  VS = 100v

 

Then by using the following Ohm’s Law equations:

maximum power transfer

 

We can now complete the following table to determine the current and power in the circuit for different values of load resistance.

Table of Current against Power

RL (Ω) I (amps) P (watts)
0 4.0 0
5 3.3 55
10 2.8 78
15 2.5 93
20 2.2 97
RL (Ω) I (amps) P (watts)
25 2.0 100
30 1.8 97
40 1.5 94
60 1.2 83
100 0.8 64

Using the data from the table above, we can plot a graph of load resistance, RL against power, P for different values of load resistance. Also notice that power is zero for an open-circuit (zero current condition) and also for a short-circuit (zero voltage condition).

Graph of Power against Load Resistance

maximum power against load

 

From the above table and graph we can see that the Maximum Power Transfer occurs in the load when the load resistance, RL is equal in value to the source resistance, RS that is: RS = RL = 25Ω. This is called a “matched condition” and as a general rule, maximum power is transferred from an active device such as a power supply or battery to an external device when the impedance of the external device exactly matches the impedance of the source.

List Price: £58.00
Current Price: £29.95
Buy Now
Price Disclaimer

One good example of impedance matching is between an audio amplifier and a loudspeaker. The output impedance, ZOUT of the amplifier may be given as between and , while the nominal input impedance, ZIN of the loudspeaker may be given as only.

Then if the speaker is attached to the amplifiers output, the amplifier will see the speaker as an load. Connecting two speakers in parallel is equivalent to the amplifier driving one speaker and both configurations are within the output specifications of the amplifier.

Improper impedance matching can lead to excessive power loss and heat dissipation. But how could you impedance match an amplifier and loudspeaker which have very different impedances. Well, there are loudspeaker impedance matching transformers available that can change impedances from to , or to 16Ω’s to allow impedance matching of many loudspeakers connected together in various combinations such as in PA (public address) systems.

Transformer Impedance Matching

One very useful application of impedance matching in order to provide maximum power transfer between the source and the load is in the output stages of amplifier circuits. Signal transformers are used to match the loudspeakers higher or lower impedance value to the amplifiers output impedance to obtain maximum sound power output. These audio signal transformers are called “matching transformers” and couple the load to the amplifiers output as shown below.

Transformer Impedance Matching

transformer impedance matching

 

The maximum power transfer can be obtained even if the output impedance is not the same as the load impedance. This can be done using a suitable “turns ratio” on the transformer with the corresponding ratio of load impedance, ZLOAD to output impedance, ZOUT matches that of the ratio of the transformers primary turns to secondary turns as a resistance on one side of the transformer becomes a different value on the other.

If the load impedance, ZLOAD is purely resistive and the source impedance is purely resistive, ZOUT then the equation for finding the maximum power transfer is given as:

transformer turns ratio matching

 

Where: NP is the number of primary turns and NS the number of secondary turns on the transformer. Then by varying the value of the transformers turns ratio the output impedance can be “matched” to the source impedance to achieve maximum power transfer. For example,

Maximum Power Transfer Example No2.

If an loudspeaker is to be connected to an amplifier with an output impedance of 1000Ω, calculate the turns ratio of the matching transformer required to provide maximum power transfer of the audio signal. Assume the amplifier source impedance is Z1, the load impedance is Z2 with the turns ratio given as N.

transformer impedance matching circuit

transformer turns ratio

 

Generally, small transformers used in low power audio amplifiers are usually regarded as ideal so any losses can be ignored.

In the next tutorial about DC Theory we will look at Star Delta Transformation which allows us to convert balanced star connected circuits into equivalent delta and vice versa.


 

« | »

7 Responses to “Maximum Power Transfer”

  1. John Wiltrout

    Perhaps there is a difference in the conventions and I shouldn’t argue with the teacher, but, If RL=0 indicates an open circuit what does RL= infinity indicate? While both zero and infinity are theory values and meaningless in the real world they are the limits of a series. I would agree that GL = 0 (conductance of the Load = 0) should indicate an open circuit but I am still do not understand why plugging 0 into your equation I = VS/ (RL + RS) would not give an answer of 4 amps. I do agree that the power should be 0.
    John

    Reply
    • Wayne Storr

      If there is no load resistor connected, then there is no closed circuit, then there is no 4 amps. If it makes you feel better, we will assume the load resistor is a complete short circuit, ie, 0 Ohms across the source. The current supplied by the source through this short will indeed by 4.0 amps (maximum value). The I^2R power delivered by the source will therefore be 4.0 Amps x 4.0 Amps x 0 Ohms = 0. The same as before. Then, if the load is infinity, no power is delivered to the load as maximum voltage exists but no current. If the load is zero, no power is delivered to the load as maximum current exists but no voltage. For maximum power to be transferred between the source and the load the two must have the same impedance.

      Reply
  2. John Wiltrout

    I am continuing to learn and greatly enjoy your tutorials. In your Table above shouldn’t I = 4 when RL = 0?
    John

    Reply

Leave a Reply

Your email address will not be published. Required fields are marked *


− 3 = six

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>